Arbeitsbericht Nr. 24/2003

Hrsg.: Matthias Schumann

Thomas Diekmann / Svenja Hagenhoff

Ubiquitous Computing: State of the Art
Inhaltsverzeichnis

Inhaltsverzeichnis ..................................................................................................................................II

Abbildungsverzeichnis .........................................................................................................................III

Abkürzungsverzeichnis ....................................................................................................................... IV

1 Problemstellung ................................................................................................................................1

2 Grundlagen ........................................................................................................................................3
  2.1 Der Begriff des Ubiquitous Computing ....................................................................................3
  2.2 Ubiquitous Computing im Forschungskontext .......................................................................6

3 State of the Art in der Literatur ........................................................................................................8
  3.1 Formale Betrachtung ..................................................................................................................8
  3.2 Inhaltliche Betrachtung .............................................................................................................10

4 Grundlegende Konzepte und Anwendungsbeispiele ..................................................................13
  4.1 Konzepte und Anwendungsbeispiele zur Umsetzung von Dezentralität ..................................13
  4.2 Konzepte und Anwendungsbeispiele zur Umsetzung von Diversifikation ...............................14
    4.2.1 Geräte ..................................................................................................................................14
    4.2.2 Software .............................................................................................................................16
  4.3 Konzepte und Anwendungsbeispiele zur Umsetzung von Konnektivität ...............................17
    4.3.1 Netzwerktypen ...................................................................................................................18
    4.3.2 Internetprotokolle und Formate .........................................................................................21
  4.4 Konzepte und Anwendungsbeispiele zur Umsetzung von Simplizität ....................................24
    4.4.1 Embedded Devices ...........................................................................................................24
    4.4.2 Mensch-Maschine-Schnittstellen ......................................................................................25

5 Zusammenfassung und Ausblick ..................................................................................................28

Literaturverzeichnis .............................................................................................................................29
Abbildungsverzeichnis

Abbildung 2-1: Entwicklungsstufen zum Ubiquitous Computing ............................................................. 3
Abbildung 2-2: Paradigmen im Ubiquitous Computing ........................................................................... 5
Abbildung 2-3: Ubiquitous Computing im Forschungskontext ................................................................. 7
Abbildung 4-1: Mögliche Architektur von Smart Devices ..................................................................... 14
Abbildung 4-2: Systematisierung drahtloser Netzwerke ....................................................................... 18
<table>
<thead>
<tr>
<th>Abkürzung</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>CSL</td>
<td>Computer Science Laboratory</td>
</tr>
<tr>
<td>DTD</td>
<td>Document Type Definition</td>
</tr>
<tr>
<td>GSM</td>
<td>Global System for Mobile Communication</td>
</tr>
<tr>
<td>HR-DSSS</td>
<td>High Rate Direct Sequence Spread Spectrum</td>
</tr>
<tr>
<td>HTML</td>
<td>Hypertext Markup Language</td>
</tr>
<tr>
<td>HTTP</td>
<td>Hypertext Transfer Protocol</td>
</tr>
<tr>
<td>HTTPS</td>
<td>Hypertext Transfer Protocol over Secure Socket Layer</td>
</tr>
<tr>
<td>IEEE</td>
<td>Institute of Electrical and Electronics Engineers</td>
</tr>
<tr>
<td>IP</td>
<td>Internet Protocol</td>
</tr>
<tr>
<td>IPv4</td>
<td>Internet Protocol Version 4</td>
</tr>
<tr>
<td>IPv6</td>
<td>Internet Protocol Version 6</td>
</tr>
<tr>
<td>IrDA</td>
<td>Infrared Data Association</td>
</tr>
<tr>
<td>JRE</td>
<td>Java Runtime Environment</td>
</tr>
<tr>
<td>PARC</td>
<td>Palo Alto Research Center</td>
</tr>
<tr>
<td>PC</td>
<td>Personal Computer</td>
</tr>
<tr>
<td>PDA</td>
<td>Personal Digital Assistant</td>
</tr>
<tr>
<td>SGML</td>
<td>Standard Generalized Markup Language</td>
</tr>
<tr>
<td>UMTS</td>
<td>Universal Mobile Telecommunications System</td>
</tr>
<tr>
<td>WLAN</td>
<td>Wireless Local Area Network</td>
</tr>
<tr>
<td>WPAN</td>
<td>Wireless Personal Area Network</td>
</tr>
<tr>
<td>WWAN</td>
<td>Wireless Wide Area Network</td>
</tr>
<tr>
<td>W3C</td>
<td>World Wide Web Consortium</td>
</tr>
<tr>
<td>XML</td>
<td>Extensible Markup Language</td>
</tr>
</tbody>
</table>
## 1 Problemstellung

Der Begriff des „Ubiquitous Computing“ wurde 1991 von dem damals leitenden Wissenschaftler am Forschungszentrum von XEROX in Palo Alto, Mark Weiser, begründet.\(^1\) Er verstand unter Ubiquitous Computing „a method of enhancing computer use by making many computers available throughout the physical environment, but making them effectively invisible to the user“.\(^2\) Die Diskussion um Ubiquitous Computing wurde durch die fortschreitende Entwicklung im Bereich der Hard- und Software stark beflügelt, scheint die technische Machbarkeit des Ubiquitous Computing dadurch doch immer näher zu rücken. Tabelle 1-1 zeigt die wichtigsten dieser Entwicklungen.\(^3\)

<table>
<thead>
<tr>
<th>Preisverfall Hardware</th>
<th>Das Moore’sche Gesetz vom exponentiellen Wachstum der Leistung von Mikroprozessoren gilt immer noch und führt somit weiterhin zu fallenden Preisen.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Miniaturisierung Hardware</td>
<td>Hardware wird so klein, dass sie nahezu unsichtbar ist. Man spricht auch von „Embedded Networked Processors“.</td>
</tr>
<tr>
<td>Energieverbrauch Hardware</td>
<td>Bei gleich bleibender Leistung und Funktionalität von Mikroprozessoren sinkt der Energieverbrauch.</td>
</tr>
<tr>
<td>Sensorik</td>
<td>Die Qualität der für das Ubiquitous Computing benötigten Sensoren steigt kontinuierlich.</td>
</tr>
<tr>
<td>Preisverfall Kommunikation</td>
<td>Prognosen zufolge verdreifacht sich die Bandbreite der Kommunikationsnetzwerke in den nächsten Jahren alle zwölf Monate.</td>
</tr>
<tr>
<td>Neue Materialien</td>
<td>Flexible Bildschirme und intelligentes Papier werden die Entwicklung des Ubiquitous Computing maßgeblich beeinflussen.</td>
</tr>
<tr>
<td>Standards</td>
<td>Standards mit breiter Akzeptanz wie XML begünstigen die Entwicklung von Ubiquitous Computing.</td>
</tr>
</tbody>
</table>

Tabelle 1-1: Ubiquitous Computing begünstigende Entwicklungen

Da gerade die technischen Fortschritte zu der aktuellen Diskussion im Ubiquitous Computing geführt haben, konzentriert sie sich zurzeit aber auch sehr stark auf technologische Aspekte und vernachlässigt betriebswirtschaftliche Aspekte. Um aus der Sicht der Betriebswirtschaft an die Thematik des Ubiquitous Computing herangehen zu können, kann man aber diese technologische Diskussion über Ubiquitous Computing als Grundlage aufgreifen und mit

---

2. Weiser 1993a, S. 74 ff..
Problemstellung

betriebswirtschaftliche Aspekte anreichern. Ziel dieses Arbeitsberichts ist es, den aktuellen Stand der Forschung im Bereich Ubiquitous Computing aus technologischer Sicht komprimiert darzustellen und somit eine Grundlage für eine solche Erweiterung der Diskussion zu legen.

2 Grundlagen

In diesem Kapitel soll zunächst der Begriff des „Ubiquitous Computing“ eingegangen werden. Im Anschluss wird der Forschungsbereich des Ubiquitous Computing in seiner Beziehung zu anderen Forschungsbereichen eingeordnet.

2.1 Der Begriff des Ubiquitous Computing


Abbildung 2-1 zeigt die 3 Entwicklungsstufen hin zum Ubiquitous Computing.

\[\text{Abbildung 2-1: Entwicklungsstufen zum Ubiquitous Computing}\]

\[\text{Mainframe-Ära: ein Computer, viele Anwender} \]
\[\text{PC-Ära: ein Computer, ein Anwender} \]
\[\text{Ubiquitous-Computing-Ära: ein Anwender, viele Computer} \]

\[\text{4 Vgl. Leimeister/Krcmar 2002, S. 1284.}\]
\[\text{5 In Anlehnung an Samulowitz 2002, S. 5.}\]
Die Vision des Ubiquitous Computing besagt, dass Computer allgegenwärtig, also ubiquitär, sein werden. Sie sind aber für den Anwender nicht wahrnehmbar, sondern vielmehr unsichtbar oder zumindest so klein, dass sie quasi unsichtbar sind. Computer erscheinen den Anwender nicht mehr als ein einzelner, identifizierbarer Gegenstand, sondern verschmelzen mit der physischen Realität. Physische Dinge werden mit informationstechnischen Teilen kombiniert und werden so zu hybriden Objekten, die auch als smarte Dinge bezeichnet werden. Der Computer wird nicht mehr zur Abbildung der physischen Realität (Virtual Reality) genutzt, sondern in die physische Umwelt integriert (Calm Computing). Das führt dazu, dass die Technologie nur Mittel zum Zweck ist und völlig in den Hintergrund tritt, also keine besondere Aufmerksamkeit seitens des Anwenders erfordert.


Fasst man die gemachten Aussagen zu einer Systematik zusammen, kann man vier verschiedene in der Vision des Ubiquitous Computing postulierte Paradigmen identifizieren (s. Abbildung 2-1), die im Folgenden erläutert werden sollen.\(^\text{12}\)

**Abbildung 2-2: Paradigmen im Ubiquitous Computing**

**Dezentralisierung**

**Diversifikation**

**Konnektivität**
Smarte Dinge in Ubiquitous Computing Szenarien sollen miteinander interagieren, was eine Konnektivität zwischen den Dingen voraussetzt. Neben der Netzwerkinfrastruktur, die auf

\(^{12}\) Vgl. Hansmann 2001, S. 18 ff..

\textbf{Simplizität}


\section*{2.2 Ubiquitous Computing im Forschungskontext}


\textsuperscript{13} Vgl. Coulouris/Dollimore/Kindberg 2002, S. 129.


Abbildung 2-3: Ubiquitous Computing im Forschungskontext

\[\text{Verteilte Systeme} \rightarrow \text{Mobile Computing} \rightarrow \text{Ubiquitous Computing}\]

3 State of the Art in der Literatur


3.1 Formale Betrachtung


---

18 S. z. B. Amor 2002.
19 Z. B. Personal and Ubiquitous Computing

Neben den Veröffentlichungen, die sich mit der Vision des Ubiquitous Computing als Ganzes befassen, existieren zahlreiche Veröffentlichungen, die sich mit speziellen Problemstellungen des Ubiquitous Computing auseinandersetzen. Diese wurden in der Mehrzahl in Konferenzbänden publiziert. Tabelle 3-1 listet aktuelle Konferenzbände und deren Themenschwerpunkte auf, um einen kurzen Überblick über aktuell bearbeitete Themenschwerpunkte zu geben.

<table>
<thead>
<tr>
<th>Konferenzbandtitel</th>
<th>Konferenztitel</th>
<th>Themenschwerpunkte (z. T. nur Auswahl)</th>
</tr>
</thead>
</table>
| Pervasive Computing | First International Conference, Pervasive 2002 Zurich, Switzerland, August 2002 | - System Design  
- Applications  
- Identification and Authentication  
- Model, Platforms and Architectures |
- System Aspects  
- Networking  
- Processor Architecture  
- Middleware ans Verification |
| Ubicomp 2001: Ubiquitous Computing | International Conference Atlanta, Georgia USA, September 2001 | - Location Awareness  
- Tools and Infrastructure  
- Applications for Groups  
- Application and Design Spaces  
- Research Challenges and Novel Input |
- User Studies and Design  
- Perceptual Interfaces and Responsive Environments  
- Sensors and Applications  
- Ubiquitous Computing in Domestic Environments |
- Context Awareness  
- New Devices and Technologies  
- Social Aspects and Privacy  
- New Interfaces |

Tabelle 3-1: Aktuelle Konferenzbände zu Ubiquitous Computing

Neben Konferenzen, die ausschließlich Ubiquitous Computing (bzw. Pervasive Computing etc.) gewidmet sind, wurden und werden mehrere Konferenzen abgehalten, die Ubiquitous Computing als ein Fokus neben anderen Bereichen behandeln.


3.2 Inhaltliche Betrachtung


Smart Spaces

Unter Smart Spaces werden physisch oder logisch abgeschlossene Räume bzw. Plätze verstanden, die durch physische, mit Computern ausgestatteten Objekte (Smart Nodes) aufgespannt werden. Auch wenn es sich bei Nodes um herkömmliche Endgeräte wie etwa PCs oder PDAs handeln kann, definiert man Smart Nodes üblicherweise als24:

- Eingebettete Systeme (embedded systems)
- mit einem drahtlosen Netzwerkzugang,
- die über Sensoren verfügen,
- eine autonome Stromversorgung haben
- und eine spezifische Rolle übernehmen.

In Smart Nodes werden die physische und die digitale Welt zusammengeführt, wodurch diese sich gegenseitig erfassen und kontrollieren können.25 Da Smart Nodes physische Gegenstände sind, sind sie - im Kontrast zu herkömmlichen verteilten Systemen in denen man versucht von dem Ort zu abstrahieren (Ortstransparenz) - ortsgebunden, d. h. sie können immer anhand ihres Ortes identifiziert werden.26 Insbesondere bei mobilen Smart Nodes bei denen sich der Ort in unregelmäßigen, nicht vorhersagbaren Abständen ändert, stellt sich das Problem wie sich Smart Nodes spontan in Smart Spaces integrieren. Auf Ebene des Netzwerks muss es möglich sein, dass sich unter Umständen einige hundert Smart Nodes spontan vernetzen und einen neuen Smart Space bilden. Die Vernetzung muss ohne große Konfiguration automatisch erfolgen. Auf Applikationsebene muss die auf der Netzwerkebene ermöglichte Kommunikation dem Kontext entsprechend ausgeführt

24 Vgl. Abowd/Sterbenz 2000, S. 36 ff..
werden. Ein sehr illustratives Beispiel für einen Smart Space ist ein Besprechungszimmer, in dem sich die Geräte der Besprechungsmitglieder (PDAs) mit den Geräten im Besprechungszimmer (Beamer, Drucker) ad-hoc vernetzen und somit ein Smart Space erzeugen.

**Invisibility**


**Kontext-Adaptivität**

Geräte im Ubiquitous Computing sind in die Umwelt integriert und sind somit ein Teil dieser. Eine vollständige Integration von Geräten in die Umwelt setzt voraus, dass die Geräte über ihre Umwelt informiert sind und sich somit der Umwelt anpassen können. Die Umwelt der Geräte wird auch als Kontext bezeichnet und die Anpassung an die Umwelt somit als Kontext-Adaptivität. Unter dem Kontext werden alle Informationen zusammengefasst, die in

27 Vgl. Heidemann/Govindan/Estrin 1998
29 Vgl. Satyanarayanan 2001, S. 11
30 Weiser/Brown 1998
irgendeiner Form die Situation einer Entität (Anwender, Objekt, Lokalität) beschreiben.\textsuperscript{32} Der Kontext kann beispielsweise Informationen über die

- Computerumwelt (Anzahl der Prozessoren, Netzwerkkapazitäten, verfügbare Ausgabegeräte etc.),
- die Anwenderumwelt ( Ort, soziale Situation, anwesende Personen)
- und die physikalische Umwelt ( Beleuchtung und Lautstärke)

umfassen.\textsuperscript{33} Da die Informationen, die der Kontext enthält, sehr heterogen sind und die Informationen zum Teil nur sehr schwer erfassbar und oftmals noch viel schwerer messbar sind, stellt die Erfassung des Kontextes und die Repräsentation des Kontextes in einem einheitlichen Format eine sehr große Herausforderung dar. Auch die Dynamik des Kontextes, die sich beispielsweise durch Ortsänderungen des Benutzers ergibt, erschwert die Handhabung des Kontextes.

\textsuperscript{32} Vgl. Dey 2000, S. 4.
\textsuperscript{33} Vgl. Schilit/Adams/Want 1994, S. 85 ff.
4 Grundlegende Konzepte und Anwendungsbeispiele


4.1 Konzepte und Anwendungsbeispiele zur Umsetzung von Dezentralität

Um Dezentralität umzusetzen, kommen insbesondere Konzepte aus dem Forschungsbereich „Verteilte Systeme“ zum Einsatz, was nicht verwundert ist doch Ubiquitous Computing - wie schon in Kapitel 2.1 festgestellt – die konsequente Weiterentwicklung von verteilten Systemen. Die bei verteilten Systemen zum Einsatz kommenden Konzepte lassen sich anhand des Gegenstandes der Verteilung untergliedern34:

- Konzepte zur Funktionsverteilung
- Konzepte zur Datenverteilung
- Konzepte zur Lastverteilung


35 Vgl. Samulowitz 2002, S. 34f..
„Lebenszeit“ beschränkte Multicast-Nachricht gesendet wird. Durch diese Methode kann bis zu einem gewissen Grad sichergestellt werden, dass nur Suchdienste in einem bestimmten Radius antworten.

4.2 Konzepte und Anwendungsbeispiele zur Umsetzung von Diversifikation


4.2.1 Geräte

Geräte im Ubiquitous Computing haben eine sehr begrenzte Funktionalität, die genau mit der Aufgabenstellung des Gerätes abgestimmt ist. Eine Anpassung an die Aufgabenstellung impliziert eine Diversifikation bzgl. der Rechenleistung, des User Interface, der Kommunikation, der Formgebung und den Schnittstellen zur realen Welt. Abbildung 4-1 zeigt eine mögliche Architektur eines Gerätes (Smart Device).

Abbildung 4-1: Mögliche Architektur von Smart Devices

---


Obwohl Ubiquitous Computing heutzutage weiterhin eine Vision - viele Kritiker behaupten auch eine Utopie - ist, gibt es bereits eine große Bandbreite an unterschiedlichen Geräten, die Eigenschaften von Smart Devices aufweisen. Um zumindest eine grobe Struktur in dieses Sammelsurium von Geräten zu bekommen, können die Geräte in vier verschiedene Kategorien eingeteilt werden:


- **Intelligente (Haushalts-)Geräte** (Intelligent Appliances) sind herkömmliche Geräte, die durch die Vernetzung und die Ausstattung mit mehr Intelligenz im Vergleich zu herkömmlichen Geräten verbessert werden. Beispiele hierfür sind Waschmaschinen, die sich über das Internet automatisch neue Waschprogramme herunterladen oder Fahrkartenautomaten, die neben einfachen Fahrkarten auch Sitzplatzreservierungen etc. ausstellen können.

- **Intelligente Steuerungen** (Smart Controls) erlauben die Regelung von entfernten Geräten. In der Regel sind sie vernetzt und werden beispielsweise über Miniatur-Webserver angesprochen. Mit intelligenten Steuerungen wird es beispielsweise möglich, Lampen oder andere Geräte entfernt über HTML-Seiten oder Java Applets zu bedienen. Weitere Beispiele für intelligente Steuerungen sind Smart Cards, die über Mikroprozessoren zur Bereitstellung von kryptographischen Funktionalitäten verfügen.

- **Unterhaltungssysteme** (Entertainment systems) unterliegen auf Grund technischer Weiterentwicklungen einem ständigen Wechsel. Beispielsweise ist video-on-demand,
also die Bereitstellung von Videofilmen zu einer beliebigen Zeit und an einen beliebigen Ort, eine typische, die Ubiquitous Computing Technologien anwendet.


4.2.2 Software

Betriebssysteme bzw. Laufzeitumgebungen


Service Discovery

Wenn die auf eine spezielle Funktionalität beschränkten Geräte ihre Funktionalität als Service anderen Geräten anbieten sollen, muss es einen Weg geben die Geräte und damit den Service zu finden. Wenn ein Drucker beispielsweise seine Funktionalität, also die Fähigkeit zu drucken, anderen Geräten anbietet, müssen die Geräte wissen wo sich der Drucker befindet und in welcher Art und Weise er angesprochen werden muss. Heutzutage...

---

42 Vgl. Hansmann 2001, S. 162 ff..
müssen Computer in der Regel erst aufwendig administriert werden, bevor sie einen Drucker nutzen können. Im Ubiquitous Computing eine aufwendige Administration unerwünscht, vielmehr sollen die Geräte spontan zusammenarbeiten. Man spricht daher auch vom „Ad-hoc Networking“. Um dieses Problem zu lösen, wurden in letzter Zeit mehrere Ansätze entwickelt, die den Prozess des „Service Discovery“ umsetzen. Unter Service Discovery versteht man die Fähigkeit

- die Existenz und die Präsenz eines Gerätes anderen Geräten zu vermitteln,
- Dienste eines Gerätes zu beschreiben und zu veröffentlichen,
- Dienste anderer Geräte finden und nutzen zu können,
- keine Administration zu erfordern und
- mit anderen Geräten kommunizieren zu können.


4.3 Konzepte und Anwendungsbeispiele zur Umsetzung von Konnektivität

Zur Umsetzung der Konnektivität wird sich Ubiquitous Computing natürlich des Internets bedienen. Es bietet mit seinen z. Z. knapp 200 Millionen Hosts und seinen weit

44 Vgl. Haase 2001, S. 107 ff..
45 Vgl. Hansmann 2001, S. 303 ff..

### 4.3.1 Netzwerktepen

Es gibt eine Vielzahl von unterschiedlichen drahtlosen Netzwerktepen, die sich vor allem durch das physikalische Übertragungsmedium, die Bandbreite und die Reichweite unterscheiden.\(^{49}\) Abbildung 4-2 zeigt eine mögliche Systematisierung gängiger drahtloser Netzwerktepen.

![Abbildung 4-2: Systematisierung drahtloser Netzwerke](image)

**WPAN**

WPANs dienen dazu mobile Geräte mit anderen mobilen Geräten oder fixen Geräten in unmittelbarer Nähe zu verbinden. Die Reichweite von WPANs ist üblicherweise auf maximal 10 Meter beschränkt. Im Vergleich zu WLANs und WWANs (s. u.) ist die Bandbreite der Netzwerkverbindungen zwar geringer, WPANs sind aber wesentlich kostengünstiger zu

\(^{49}\) Vgl. Coulouris/Dollimore/Kindberg 2002, S. 96
implementieren und haben einen wesentlich geringeren Energieverbrauch, was gerade bei kleinen mobilen Geräten mit beschränkter Batterielaufzeit von großer Bedeutung ist.\textsuperscript{50}


Bei IrDA werden die Daten optisch im Infrarot-Bereich übertragen. IrDA unterstützt Punkt-zu-Punkt-Verbindungen mit einer Reichweite von 1 Meter und einer Übertragungsgeschwindigkeit von bis zu (theoretisch) 16 Mbps. Im Gegensatz zu dem auf Funkwellen basierenden Bluetooth, handelt es sich bei IrDA um gerichtete Übertragungen, d. h. der Sender muss den Infrarot-Strahl auf den Empfänger richten. Aufgrund der physikalischen Eigenschaften von Licht, muss die Verbindungslinie von Sender zu Empfänger frei von Hindernissen sein. Obwohl dies auf den ersten Blick ein gravierender Nachteil von IrDA ist, stellt dieses auch ein Vorteil dar, da es zu keinerlei Interferenzen mit Netzwerken außerhalb des optischen Empfangsbereiches kommt und somit auch die Gefahr des Abhörens durch Dritte großteils gebannt wird.\textsuperscript{52}

**WLAN**

Der wichtigste Standard im Bereich von WLANs ist der von dem Institute of Electrical and Electronics Engineers (IEEE) erarbeitete IEEE 802.11-Standard. Ursprünglich sah dieser Standard drei verschiedene Übertragungstechniken, eine Infrarotverfahren und zwei Kurzwellenfunkverfahren, vor. Da die Kurzwellenverfahren im gleichen Frequenzbereich wie beispielsweise Garagentoröffner nutzen und es somit zu Interferenzen kommen kann, wurde der Standard später um weitere funkbasierte Übertragungsverfahren in anderen Frequenzbereichen erweitert. Heute basieren die meisten verfügbaren Geräte auf dem IEEE 802.11b-Standard der mit HR-DSSS (High Rate Direct Sequence Spread Spectrum) arbeitet. IEEE 802.11b ermöglicht abhängig von den Übertragungsbedingungen (Entfernung

\textsuperscript{50} Vgl. Deltel 2002, S. 328
\textsuperscript{51} Vgl. Tanenbaum 2003, S. 345 ff..
\textsuperscript{52} Vgl. Suvak 2000, 31 ff..
zwischen den Stationen, Hindernisse etc.) eine Übertragungsraten von bis 1, 2, 5,5 und 11 Mbps. Eine verbesserte Version des IEEE 802.11b-Standards, IEEE 802.11g, die zurzeit auf den Markt drängt, soll theoretisch Übertragungsraten bis zu 54 Mbps unterstützen.53 WLANs wurden in letzter Zeit immer beliebter, da für die Installation eines drahtlosen Funknetzwerkes nicht aufwendig Kabel verlegt werden müssen und sie somit im Vergleich zu herkömmlichen LANs und kostengünstiger zu installieren sind. Es werden aber nicht nur öffentliche Gebäude, Flughäfen und Bürogebäude mit so genannten Hot-Spots (WLAN-Zugänge) ausgestattet, es gibt auch Versuche mit WLAN-Technologien eine flächendeckende Versorgung von Haushalten mit Breitband-Internet zu versorgen und somit die teure „Letzte Meile“ zu überbrücken54. Interessant für das Ubiquitous Computing ist neben der Möglichkeit der flächendeckenden Versorgung mit breitbandigen Internet-Anschlüssen vor allem die Tatsache, dass immer mehr Geräte, vor allem PDAs, mit WLAN-Hardware ausgerüstet werden.

**WWAN**


---

53 Vgl. Tanenbaum 2003, S. 326 ff..
54 Vgl. beispielsweise das Projekt GoeMobile der Gesellschaft für wissenschaftliche Datenverarbeitung mbH Göttingen (GWDG) (http://www.goemobile.de).
4.3.2 Internetprotokolle und Formate


Internet Protocol


56 Vgl. Puppe 2003, 144 f.

**HTTP**


**XML**


---

60 Vgl. Wilde 1999, S. 53 ff..
61 Vgl. Alonso 2004, S. 94 ff..


Web Services

Web Services entstanden aus der Idee, verteilte Systeme unabhängig von bestimmten Programmiersprachen und Plattformen planen, realisieren und betreiben zu können. Als Grundlage von Web Services suchte man Technologien, die über eine ausreichende Diffusion und Reife verfügen. Die Internettechnologien wie HTTP, XML etc. boten sich mit ihren vielen Millionen Benutzern für diese Aufgabenstellung an. Web Services sind somit keine neuen Technologien, sondern vielmehr eine Ansammlung von bewährten Technologien, angereichert durch auf Internettechnologien angepasste Konzepte.64 Sicherlich spielten aber auch die Simplizität und die Offenheit für zukünftige Erweiterungen der Internettechnologien bei der Wahl der Technologien eine entscheidende Rolle.65

Laut dem W3C ist ein Web Service „a software application identified by a URI, whose interfaces and bindings are capable of being defined, described, and discovered as XML artifacts. A Web Service supports direct interactions with other software agents using XML-based messages exchanged via Internet-based protocols“.66 Folgt man dieser Definition von Web Services, so sind sie hervorragend für den Einsatz im Ubiquitous Computing geeignet. Denn wenn sie es ermöglichen, dass Software-Agenten mit anderen Software-Agenten

---

62 Vgl. Wilde 1999, S. 359 f..
63 Vgl. Weitzel/Harder/Buxmann 2001, S. 15 ff..
65 Vgl. Knuth 2002, S. 9 ff..
66 W3C 2002
zusammenarbeiten, ermöglichen sie es auch, dass Gegenstände durch die auf Ihnen ablauenden Web Services mit anderen Gegenständen kommunizieren können.

4.4 Konzepte und Anwendungsbeispiele zur Umsetzung von Simplicität


4.4.1 Embedded Devices


\(^\text{69}\) Vgl. Weiser 1993a, S. 74 ff..
\(^\text{70}\) Vgl. Pfaff/Skiera 2002, S. 31 ff..

Wearable Computers sollen beispielsweise Monteure durch Displays, die am Armgelenk oder vor einem Auge getragen werden und Informationen zur aktuellen Tätigkeit anzeigen unterstützen. Da aber herkömmliche Displays entweder ablenken oder das Sehfeld einschränken, arbeitet man bereits an neueren Technologien, die beispielsweise die notwendigen Informationen direkt auf die Netzhaut projizieren und somit das „normale“ Bild des Anwenders anreichern, ohne das das Sehfeld eingeschränkt wird.


4.4.2 Mensch-Maschine-Schnittstellen

Im Ubiquitous Computing soll die Bedienung von Computern intuitiv geschehen. Üblicherweise werden Computer mit einer Tastatur in Verbindung mit einer Maus bedient, was man wohl kaum als intuitive Bedienung bezeichnen kann. Eine intuitive Bedienung eines Computers kann nur stattfinden, wenn wir auf natürliche Art und Weise mit dem Computer

72 Vgl. Baber 2001, S. 123 ff..
kommunizieren können. Es wird daher schon lange an Mensch-Maschine-Schnittstellen gearbeitet, die auf Basis von Sprache, Gesten oder Handschrift arbeiten.

Schon seit mehreren Jahren werden Programme zur Spracherkennung auf dem Markt angeboten. Diese müssen zunächst von dem Benutzer angelernt werden, damit die Programme sich auf die sprachlichen Besonderheiten des Benutzers einstellen können. Bisher haben sich diese Spracherkennungsprogramme jedoch nicht in der Breite durchsetzen können, da sie zum einen weiterhin Schwächen bei der Spracherkennung zeigen und zum anderen zusammen mit Computern eingesetzt werden, die auf eine herkömmliche Mensch-Maschine-Schnittstelle ausgerichtet sind. Neben der eigentlichen Spracherkennung, also der Umwandlung menschlicher Sprache in digitale Informationen, ist auch die umgekehrte Weg, also die Synthese menschlicher Sprache für eine natürlichsprachliche Mensch-Maschine-Schnittstelle notwendig. Hierbei wird die menschliche Sprache komplett synthetisch erzeugt oder aus Aufnahmen menschlicher Sprache zusammengesetzt.73

Gerade in lauten Umgebungen oder in Fällen in denen eine gewisse Privatsphäre gewahrt bleiben muss, ist die Kommunikation mittels Spracherkennung nicht einsetzbar. In solchen Fällen bietet sich die Kommunikation mittels Handschriftenerkennung an. Handschriftenerkennung kommt insbesondere bei Geräten zum Einsatz, bei denen aufgrund der Größe keine Tastaturen integriert werden können. Um zu vermeiden, dass bei Sprachen mit vielen Buchstaben wie etwa Japanisch oder Chinesisch die Tastatur vergrößert werden muss, werden die Tasten einer Tastatur mehrfach belegt, was zu einer komplexen Bedienung führt. Die Fläche, die ein Handerkennungssystem benötigt, ist im Vergleich zu einer Tastatur extrem klein und kommt ohne komplizierte Mehrfachbelegungen aus.74

Die Entwicklung von Handschriftenerkennungssystemen begann zwar schon vor etwa 40 Jahren, konnte sich aber wegen fehlender Hardware und wegen nicht ausreichender Rechenkapazität im Massenmarkt lange nicht durchsetzen. Erst mit dem Aufkommen von PDAs am Anfang der 1990er, hat die Handschriftenerkennung ein adäquates Einsatzgebiet gefunden und wird mit wachsender Verbreitung eingesetzt.75

Wesentlich weiter als die bisher beschriebenen Ansätze geht ein Neurobiologen Team der Duke University. Ihr Ziel ist es einen Computer direkt vom Gehirn steuern zu lassen. Ihnen ist es gelungen einen Affen so zu trainieren, dass er einen Roboterarm nur durch die elektrischen Impulse seines Gehirns steuern kann. Sie haben dafür 320 sehr kleine Elektroden eingesetzt, die die elektrischen Impulse der Neuronen an den Roboterarm weitergeben. Während der Affe zunächst den Roboterarm durch einen Joystick steuerte,

\textsuperscript{76} Vgl. Carmena et al. 2003, S. 1 ff.
5 Zusammenfassung und Ausblick


Literaturverzeichnis


Krishnamurthy/Rexford 2001: Krishnamurthy, B./Rexford, J.: Web protocols and practice: HTTP/1.1, networking protocols, caching and traffic measurement, Boston, Mass. [u.a.] 2001.
Norman 1998: Norman, D. A.: The invisible computer: why good products can fail, the personal computer is so complex, and information appliances are the solution, Cambridge, Mass. [u.a.] 1998.


